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On Kirk’s Fixed Point Main Theorem
for Asymptotic Contractions

Milan R. Tasković

Abstract. We prove that main result of asymptotic contractions by
K i r k [J. Math. Anal. Appl. 277 (2003), 645–650, Theorem 2.1, p. 647]
has been for the first time proved 17 years ago in T a s k o v i ć [Funda-
mental elements of the fixed point theory, ZUNS-1986, Theorem 4, p.
170]. But, the author (and next other authors) this historical fact is to
neglect and to ignore.

1. Introduction

In recent years a great number of papers have appeared presenting a var-
ious generalizations of the well known Banach-Picard contraction principle
(via linear and nonlinear conditions). The following result is a statement
with nonlinear conditions given in 2003 by W.A. Kirk.

Theorem 1 (Kirk [2]). Let (X, ρ) be a complete metric space, T : X → X
continuous function, and {ϕn}n∈N sequence of continous functions such that
ϕn : R0

+ → R0
+ := [0,+∞) and

ρ[Tn(x), Tn(y)] ≤ ϕn

(
ρ[x, y]

)
for all x, y ∈ X,

and n ∈ N. Assume also that there exists function ϕ : R0
+ → R0

+ such that
for any r > 0, ϕ(r) < r, ϕ(0) = 0 and ϕn → ϕ (n → ∞) uniformly of the
range of ρ. If there exists x ∈ X such that orbit of T at x is bounded, then
T has a unique fixed point ξ ∈ X and all sequences of Picard iterates defined
via T converges to ξ.

2. Main results and facts

Let X be a topological space, T : X → X, and let A : X ×X → R0
+. In

1986 Tasković [3] investigated the concept of TCS-convergence in a space
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X, i.e., a topological space X := (X,A) satisfies the condition of TCS-
convergence iff x ∈ X and if A(Tnx, Tn+1x) → 0 (n → ∞) implies that
{Tn(x)}n∈N has a convergent subsequence.

For x ∈ X the set O(x,∞) := {x, Tx, T 2x, . . . } is called the orbit of x. A
function f mapping X into reals is a T -orbitally lower semicontinuous
at the point p iff for all sequences {xn}n∈N such that xn → p (n → ∞)
it follows that f(p) ≤ lim infn→∞ f(xn). A mapping T : X → X is said
to be orbitally continuous if ξ, x ∈ X are such that ξ is a cluster point of
O(x,∞), then T (ξ) is a cluster point of T (O(x,∞)).

The following results, given in the next two theorems are given in 1986 by
M. R. Tasković [3] as a natural extension of characterization statements of
asymptotically conditions of fixed point theorem given in 1985 by Tasković
[4]. These results are according to topological spaces.

Theorem 2 (Tasković [3]). Let T be a mapping of topological space X :=
(X,A) into itself, where X satisfies the condition of TCS-convergence. Sup-
pose that there exist a sequence of nonnegative real functions {αn(x, y)}n∈N
such that αn(x, y) → 0 (n→∞) and positive integer m(x, y) such that

(B) A
(
Tn(x), Tn(y)

)
≤ αn(x, y) for all n ≥ m(x, y),

and for all x, y ∈ X, where A : X × X → R0
+. If x 7→ A(x, T (x)) is a

T-orbitally lower semicontinuous function or T is orbitally continuous and
A(a, b) = 0 implies a = b, then T has a unique fixed point ξ ∈ X and
Tn(x) → ξ (n→∞) for each x ∈ X.

Proof. For y = T (x) from (B) we have that A(Tnx, Tn+1x) ≤ αn(x, Tx) for
all n ≥ m(x, y), and thus we obtain that A(Tnx, Tn+1x) → 0 (n→∞). This
implies (from TCS-convergence) that the sequence of iterates {Tn(x)}n∈N
has a convergent subsequence {Tn(i)(x)}i∈N with the limit point ξ ∈ X.
Since x 7→ A(x, T (x)) is T -orbitally lower semicontinuous we get

A(ξ, T (ξ)) ≤ lim inf
i→∞

A
(
Tn(i)x, Tn(i)+1x

)
= lim inf

n→∞
A

(
Tnx, Tn+1x

)
= 0

which implies that A(ξ, T (ξ)) = 0, i.e. ξ = T (ξ). On the other hand, if T
is orbitally continuous the proof of previous fact is trivially. We complete
the proof by showing that T can have at most one fixed point. Indeed, if
we suppose that ξ 6= η were two fixed points, then from (B) we have

0 < A(ξ, η) = A
(
Tn(ξ), Tn(η)

)
≤ αn(ξ, η) for n ≥ m(ξ, η);

taking limits as n → ∞ we obtain a contradiction. The proof is complete.
�

Note that, from the preceding proof of Theorem 2, we can give the fol-
lowing local form of this statement.



Milan R. Tasković 47

Theorem 3 (Localization of (B), Tasković [3]). Let T be a mapping of
topological space X := (X,A) into itself, where X satisfies the condition of
TCS-convergence. Suppose that there exist a sequence of nonnegative real
functions {αn(x, y)}n∈N such that αn(x, Tx) → 0 (n → ∞) and positive
integer m(x) such that

A
(
Tn(x), Tn+1(x)

)
≤ αn(x, Tx) for all n ≥ m(x),

and for every x ∈ X, where A : X × X → R0
+. If x 7→ A(x, Tx) is a

T -orbitally lower semicontinuous function or T is orbitally continuous and
A(a, b) = 0 implies a = b, then T has at least one fixed point in X.

The proof of this statement is an analogous with the preceding proof of
Theorem 2. A brief broof of this statement may be found in Tasković [3].

Annotation. The Theorem 1 is a consequence of Theorem 2 (In this sense
in next we give the following proof of this essential fact).

Proof. (Application of Theorem 2).
Suppose that all the conditions of Theorem 1 are satisfied. We prove

that all conditions of Theorem 2 are satisfied, too. Since ϕ : R0
+ → R0

+ is
a continuous function such that ϕ(t) < t for every t > 0 and ϕ(0) = 0,
from Wong’s lemma ([5], Lemma 4, p. 201) it follows that there exists
nondecreasing continuous function ψ : R0

+ → R0
+ such that ϕ(t) < ψ(t) <

t for every t > 0 and ψ(0) = 0. Let us define A : X × X → R0
+ by

A(a, b) = ψ(ρ[a, b]), and define a sequence of functions {αn(a, b)}n∈N by
αn(a, b) = ρ[Tn(a), Tn(b)] for any a, b ∈ X. Since ψ(t) < t we get that

A
(
Tn(x), Tn(y)

)
= ψ

(
ρ[Tn(x), Tn(y)]

)
< ρ[Tn(x), Tn(y)] = αn(x, y)

this is that the condition (B) is satisfied. Since ψ(t) = 0 implies t = 0, from
A(a, b) = ψ(ρ[a, b]) = 0 it follows that ρ[a, b] = 0, i.e., a = b. From the
proof given by W.A. Kirk [2] it follows that ρ[Tn(x), Tn(y)] → 0 (n → ∞)
for all x, y ∈ X. Consequently, αn(x, y) → 0 (n → ∞). Since T and ψ
are continuous mappings the function x 7→ A(x, Tx) := ψ(ρ[x, Tx]) is a
T -orbitally lower semicontinouos. Since X is a complete metric space it
satisfies the condition of TCS-convergence. Applying Theorem 2 we obtain
that T has a unique fixed point ξ ∈ X and all sequences of Picard iterates
converge to ξ. The proof is complete. �

Further, applying the Theorem 2 we get an asymptotic version of a state-
ment due to Ivanov [1]. This is the following result which is an extension of
Kirk’s theorem on asymptotic contractions.

Theorem 4. Let (X, ρ) be a complete metric space, T : X → X a contin-
uous function, and ϕn : R0

+ → R0
+ for n ∈ N a sequence such that for all
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n ∈ N satisfy

(1) ρ[Tn(x), Tn(y)] ≤

≤ max
{
ϕn(ρ[x, y]), ϕn(ρ[x, Tx]), ϕn(ρ[y, Ty]), ϕn(ρ[x, Ty]), ϕn(ρ[y, Tx])

}
for all x, y ∈ X; and assume also that there exists a function ϕ : R0

+ → R0
+

such that for any t > 0, ϕ(t) < t, ϕ(0) = 0 and ϕn → ϕ (n→∞) uniformly
of the range of ρ. If there exists x ∈ X such that orbit of T at x is bounded,
then T has a unique fixed point ξ ∈ X and all sequences of Picard iterates
defined by T converges to ξ.

Proof. (Application of Theorem 2).
Again, since ϕ : R0

+ → R0
+ is a continuous function such that ϕ(t) < t

for every t > 0 and ϕ(0) = 0, from Wong’s lemma ([5] Lemma 4, p. 201) it
follows that there exists nondecreasing continuous function ψ : R0

+ → R0
+

such that ϕ(t) < ψ(t) < t for every t > 0 and ψ(0) = 0. We define a function
A : X ×X → R0

+ by

A(a, b) := max
{
ψ(ρ[a, b]), ψ(ρ[a, Ta]), ψ(ρ[b, T b]), ψ(ρ[a, T b]), ψ(ρ[b, Ta])

}
and define a sequence of functions {αn(x, y)}n∈N by

αn(x, y) := max
{
ρ[Tnx, Tny], ρ[Tnx, Tn+1x], ρ[Tny, Tn+1y],

ρ[Tnx, Tn+1y], ρ[Tny, Tn+1x]
}
.

It is easy to show that A and {αn(x, y)}n∈N satisfy all the required hypoth-
esis (similarly as in the proof of Kirk’s theorem) in Theorem 2. Applying
Theorem 2 we get conclusion of Theorem 4. This completes the proof. �
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Milan R. Tasković
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